

IGNITE DMD Phase I/II Study of SGT-001 Microdystrophin Gene Therapy: Update on Pulmonary Outcomes

Oscar H. Mayer¹, Barry J. Byrne², Stephanie Salabarria², Julie Berthy², Manuela Corti², Susan Redican³, Jeffry Lawrence³, Kristy J. Brown³, Courtney Shanks³, Sidney Spector³, J. Patrick Gonzalez³, Joel S. Schneider³, Carl A. Morris³, Cathryn Clary³ ¹ Children's Hospital of Philadelphia, Philadelphia, PA; ² University of Florida, Gainesville, FL; ³ Solid Biosciences, Cambridge, MA

Introduction / Objective **Duchenne Muscular Dystrophy** Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by mutations in the DMD gene that lead to the absence of functional dystrophin protein SGT-001 Skeletal and cardiac (\rightarrow) (\rightarrow) AAV9 Capsid muscle tropism High skeletal and cardiac (\rightarrow) CK8 (\rightarrow) Promoter muscle expression **SGT-001 Retains critical elements** of full-length dystrophin including Microdystrophin **Fransgene** the nNOS binding domain (µDys5) nNOS Binding Actin Binding Dystroglycan Domain Binding Domain Domain linge COOH NH3 — R16 R17 R23

SGT-001 is an AAV microdystrophin gene transfer therapy being evaluated for the treatment of DMD that delivers a unique, rationally designed dystrophin surrogate to replace the absent protein in skeletal and cardiac muscles throughout the body

Methods

- SGT-001 is currently being evaluated in the IGNITE DMD Phase I/II clinical trial
- A single intravenous infusion of SGT-001 was administered to DMD patients in two ascending dose groups
- Following administration of 5E13 vg/kg to 3 subjects, all subsequent subjects received 2E14 vg/kg
- Three untreated DMD subjects served as controls
- Safety, microdystrophin expression, patient reported outcome measures, and motor and pulmonary function were assessed at baseline and the 1-year primary outcome timepoints
- Additional evaluations at the 1.5-year timepoint have been performed and long-term safety and efficacy continue to be evaluated

Results

- Microdystrophin expression in the first 3 subjects in the 2E14 group ranged from approximately 5-17.5% of normal dystrophin by Western blot and 10-70% of positive muscle fibers by
- immunofluorescence at day 90 and were sustained or increased in long-term biopsies
- Microdystrophin positive fibers importantly demonstrated restored sarcolemmal β-sarcoglycan and nNOS in all biopsies evaluated
- Motor function in both dose groups showed stability or improvement after 1 year
- FVC % predicted after 1 year declined by a mean of 10.7% in untreated subjects but increased by
- 3.3% and 15.7% in the 5E13 and 2E14 groups, respectively
- PEF % predicted and FEV1 % predicted tracked similarly

Durable Microdystrophin Expression and Protein Function are Observed Between Day 90 and Long-Term Biopsies

	% Positive Fibers (Immunofluorescence)		% of Normal Dystrophin (Western Blot)		
	3 Months	Last Timepoint	3 Months	Last Timepoint	
Pt 4	10-20%	10-30% (24 months)	BLQ	BLQ (24 months)	
Pt 5	50-70%	85% (18 months)	17.5%	69.8% (18 months)	
Pt 6	50-70%	50-60% (12 months)	8.0%	20.3% (12 months)	

Pt 5 (18 months post-treatment)

FVC % Predicted is Improved in SGT-001 Treated Subjects at 1 Year when Natural **History Would Predict Declining Function**

Cohort	Subject	FVC % Predicted Baseline to 1 Year Change
Control	Ct 1	-9.5%
	Ct 2	-7.6%
	Ct 3	-14.9%
Low Dose (5E13	Pt 1	+8.9%
vg/kg)	Pt 2	n/a
	Pt 3	-2.4%
High Dose (2E14	Pt 4	+3.1%
vg/kg)	Pt 5	+36.7%
	Pt 6	+7.3%

Pulmonary Function in IGNITE DMD Subjects Overlayed on Mayer et al 2015 DMD Natural History

FVC: forced vital capacity n/a values represent either baseline or endpoint assessments not available or identification of suboptimal maximal respiratory efforts during testing

Results Continued

SGT-001 Treated Subjects Similarly Show Improvements in PEF % Predicted and FEV1 % Predicted 1 Year Post-Treatment

Cohort	Subject	PEF % Predicted Baseline to 1 Year Change		Cohort	Subject	FEV1 % Predicted Baseline to 1 Year Change
Control	Ct 1	-1.1%		Control	Ct 1	-8.7%
	Ct 2	n/a			Ct 2	-17.0%
	Ct 3	-18.2%			Ct 3	-12.0%
Dose (5E13 vg/kg)	Pt 1	+2.5%	Low Dose (5E13 vg/kg)	Pt 1	+13.4%	
	Pt 2	n/a		Pt 2	n/a	
	Pt 3	+38.5%		Pt 3	+4.3%	
Dose (2E14 vg/kg)	Pt 4	+15.9%	High Dose (2E14 vg/kg)	High Dose (2E14	Pt 4	+10.8%
	Pt 5	n/a		Pt 5	+15.5%	
	Pt 6	+26.7%		Pt 6	+2.8%	

PEF: peak expiratory flow | FEV1: forced expiratory volume in one second

n/a values represent either baseline or endpoint assessments not available or identification of suboptimal maximal respiratory efforts during testing

Pulmonary Function Continues to Show Stability or Improvement 1.5 Years Post-Treatment

Mean Change from Baseline to Day 540: +8.5 ±12.1% | Difference of +16.0% Compared to Natural History over 1.5 Years

*Data at 1.5 year timepoint not collected for 5E13 cohort subjects due to COVID-19; **One year and later timepoints not yet reached for additional subjects dosed

Conclusions

Durable expression and function of microdystrophin protein are observed in biopsies collected at timepoints 12-24 months post-administration of SGT-001

Encouraging evidence of motor function benefit is observed in 1-year post-treatment evaluations Pulmonary function is sustained or improved in 1 and 1.5-year post-treatment evaluations Interim data suggest the potential for SGT-001 to confer meaningful benefit for patients with DMD in multiple muscle groups